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Abstract

Density functional theory studies of the structural and electronic properties of nanoclusters (ZnO)n (n = 34, 60) in
different geometric configurations were conducted. For each cluster, an optimization (relaxation) of structure
geometry was performed, and the basic properties of the band structure were investigated. It was established
that for the (ZnO)34 nanoclusters, the most stable are fullerene-like hollow structures that satisfy the rule of
six isolated quadrangles. For the (ZnO)60 nanoclusters, different types of isomers, including hollow structures
and sodalite-like structures composed from (ZnO)12 nanoclusters, were investigated. It was determined that
the most energetically favorable structure was sodalite-type structure composed of seven (ZnO)12 clusters with
common quadrangle edges.
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Background
Wide-gap semiconductors are perspective materials to
use in optoelectronic systems, ultraviolet lasers, field
emitters, and other devices of new generation. It is said
that not only the composition but also the nature of the
nanostructures give new properties to the material.
Atomic clusters and fullerenes are the building blocks of
the new nanostructured materials which are a subject of
intensive research with the prospect of applications in
optoelectronics. Special interest is given to the clusters
of zinc oxide which, with its variety of interesting physical
and chemical properties, such as anisotropic crystalline
structure, semiconducting properties even with a wide
band gap, amphoteric chemical properties, piezoelectric
properties, biocompatibility, and high exciton energy, is
quite unique [1, 2]. A large number of studies have been
devoted to understand its structure, processes of forma-
tion and properties, and the behavior of its nanoparti-
cles [3–5]. Thin films and nanostructures based on
ZnO, are candidates for creating ultrathin displays, UV
emitters and switches [6, 7], and gas sensors [8].

The main methods of studying the electronic proper-
ties of atomic clusters are quantum mechanics methods,
such as restricted and unrestricted Hartree-Fock
method, the density functional theory, and molecular dy-
namics. To address this problem is to use theoretical
methods to study model clusters, particularly in struc-
tures that lie between molecular and bulk. Nonetheless,
the structure design still allows for many geometric
possibilities to exist, and it is challenging to find a true
global minimum energy structure.
Numerous theoretical studies of (ZnO)n clusters have

explored optimized geometries for a range of cluster
sizes, and a prevalent theoretical observation shows that
a fullerene-like structures are more stable in the case for
smaller-sized clusters, while a wurtzite-like structure shows
increased stability for larger clusters [9]. A core-cage struc-
ture for (ZnO)34 has been proposed as the most stable in
[10, 11], while [12] have predicted the hollow cage struc-
tures formed by (ZnO)2 squares and (ZnO)3 hexagons. In
the case of (ZnO)60, the studies [13, 14] revealed an ener-
getically preferred sodalite motif, while nested cage config-
uration was predicted to be the most stable in [10, 11].
Such differences indicate that there is a strong dependence
of the calculated binding energy on the details of the com-
putational framework adopted.
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This paper presents a theoretical investigation of
structural and electronic properties of clusters (ZnO)n
(n = 34, 60), within the density functional theory, in
different geometric configurations to establish which
type of structure is the most energetically favorable.

Methods
Ab initio calculations within density functional were
performed, which have been successfully used for studying
properties of nanoscale structures such as nanotubes and
nanowires [15–18]. For structural models, the optimization
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Fig. 1 Optimized structures of (ZnO)34 nanoclusters performed at the DFT/GGA level of theory
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Fig. 2 Optimized structures of (ZnO)60 nanoclusters performed at the DFT/GGA level of theory

Bovhyra et al. Nanoscale Research Letters  (2017) 12:76 Page 2 of 6



(relaxation) of the geometry (finding the equilibrium of ions
coordinates, in which the full electronic energy of the sys-
tem is minimal) was carried. Optimization was calculated
using the effective algorithm of delocalized internal coordi-
nates [19]. The convergence of the relaxation procedures
deemed reached when the magnitude of forces acting on
atoms was less than 0.05 eV/Å.
For describing the exchange-correlation energy of the

electronic subsystem, the generalized gradient approxi-
mation (GGA) in a parameterization of Perdew, Burke,
and Ernzerhof was used [20]. It is known that the use of
this approach in the calculation leads to underestimation
of the quantitative value of the binding energy. On the
other hand, an alternative description of the exchange-
correlation interaction within local density approxima-
tion (LDA) leads to overestimation of the energy values
compared to the experimental data. Using GGA in this
paper makes it possible to argue that if calculation re-
sults say that the cluster model is stable, then the real
system will be stable as well. Electronic functions of
electrons were divided in the basis of atomic orbitals, in-
cluding d-orbitals. Core electrons had been described
using effective potential with regard to relativistic correc-
tions. Integration in the first Brillouin zone was conducted
in the Monkhorst-Pack k-point set [21].

Results and Discussion
In order to determine the most stable structure for
“magic” clusters (ZnO)34 (Fig. 1) and (ZnO)60 (Fig. 2),
we examined a number of isomers. Among them were
hollow fullerene-like structures and cage structures
which met the rule of six isolated quadrangles.
There were also sodalite-like structures composed

of structural units of (ZnO)12. For each cluster, geom-
etry optimization was performed and band structure
properties were analyzed.
The binding energy of ZnO cluster as per formula

unit was calculated using the formula [22]:

Eb ¼ E Znð Þ þ E Oð Þ – 1=n � En;

where n is the number of ZnO molecules in a cluster,
E (Zn) and E (O) the basic energy states of atoms of
Zn and O, and En the total energy of a (ZnO)n cluster.

In Table 1, the geometry parameters of (ZnO)34 and
(ZnO)60 nanoclusters are presented. They include
minimal and maximal interatomic distances (d, Å) be-
tween Zn and O atoms in quadrangles and hexagons,
respectively, diameter (distance between the edges of
a cluster D, Å) of the clusters, and range of values
for angles in quadrangles and hexagons.
For all clusters, the maximum value of interatomic

distance between Zn and O atoms is set for joint edge
between quadrangle and hexagon. For angle values, we
established that smaller angles correspond to oxygen
atoms and bigger angles correspond to zinc atoms.
In Table 2, we present the properties of electronic

spectra of (ZnO)34 and (ZnO)60 nanoclusters.
In the first column, we have total energy per formula

unit of each isomer, second column is the difference be-
tween total energies with respect to the isomer with low-
est energy separately for (ZnO)34 and (ZnO)60, third
column is binding energy per formula unit, and band
gap energy is given in the fourth column. Analysis of the
energy values shows that the most energetically favorable
(ZnO)34 nanoclusters are fullerene-like hollow struc-
tures. All such structures that meet the rule of isolated
quadrangles are close in value of binding energy. The
calculated values are larger than the bulk-binding energy
of ZnO (−7.52 eV per formula unit) as expected due to
surface energy effects. Confirmation of high stability for
these clusters is the higher values of band gap between
the highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) because
such clusters are chemically inert (Fig. 3).

Table 1 Geometry parameters of (ZnO)34 and (ZnO)60 nanoclusters

Isomer d, Å in quadrangles d, Å in hexagons D, Å α, in quadrangles α, in hexagons

(ZnO)34-28 1.945–1.984 1.886–1.984 14.827 84.761–91.960 113.612–132.058

(ZnO)34-43 1.938–1.994 1.881–1.994 13.013 85.315–93.708 117.331–122.628

(ZnO)34-15 1.938–1.992 1.912–1.992 13.018 84.791–93.952 107.145–128.283

(ZnO)60-sodalite 1.931–2.284 1.884–2.284 15.659 83.927–97.183 106.583–134.193

(ZnO)60-25 1.963–1.968 1.896–1.968 16.342 85.782–92.117 109.977–129.234

(ZnO)60-24 1.964–1.970 1.890–1.970 16.112 85.622–92.846 110.167–129.060

Table 2 Electronic properties of (ZnO)34 and (ZnO)60 nanoclusters

Isomer Etotal/ZnO, eV ΔE/ZnO, eV Eb/ZnO, eV Eg, eV

(ZnO)34-A –50461.66 0 –6.764 2.275

(ZnO)34-B –50461.64 0.02 –6.748 2.151

(ZnO)34-C –50461.62 0.04 –6.724 2.048

(ZnO)34-W –50461.54 0.12 –6.645 1.124

(ZnO)60-sodalite –50461.744 0 –6.847 1.93

(ZnO)60-A –50461.734 0.01 –6.836 2.184

(ZnO)60-B –50461.732 0.012 –6.835 2.4

(ZnO)60-W –50461.699 0.045 –6.802 0.982
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In the case of (ZnO)60 nanoclusters, we confirmed that
the most stable among them is the sodalite structure
which is built from 7 (ZnO)12 nanoclusters with joint
quadrangle edges. In previous studies [23], it was shown
that the (ZnO)12 cage-like structure (truncated octahe-
dron) proved to be very stable compared to other small
(ZnO)n, suggesting that it can be used as a building
block for creating ZnO nanostructures. The values for
HOMO and LUMO for sodalite, as well as the other
(ZnO)60 structural isomers, are presented in Fig. 4.
In Fig. 5, partial densities of states from the contribu-

tions of different orbital components for each (ZnO)34
nanocluster for valence band (left) and conduction band
(right) are presented. Graphs I, III, and V demonstrate s,
p, and d states of Zn atoms; graphs II, IV, and VI corres-
pond to s and p states of O atoms.
The valence band of each cluster between −7.0 and

−4.0 eV consist mainly from 3d states of Zn and O

2p states. The bands between −4.0 and 0 eV are com-
posed from O 2p states, Zn 3d states, and in smaller
scale, Zn 3p and 3s states. The conduction band, on
the other hand, between 1 and 5 eV consists mainly
from Zn 4s and O 2p and O 2s states.
Figure 6 shows partial densities of states from the con-

tributions of different orbital components for each
(ZnO)60 nanocluster for valence band (left) and conduc-
tion band (right). Graphs I, III, and V show s, p, and d
states of Zn atoms, and graphs II, IV, and VI correspond
to s and p states of O atoms.
The valence band of each cluster between −7.0 and

−4.0 eV, like in the case with (ZnO)34 nanoclusters, is
composed from 3d states of Zn and O 2p states. The
bands between −4.0 and 0 eV consist mainly from O 2p
states, Zn 3d states, and in smaller scale, Zn 3p and 3s
states. The conduction band between 1 and 5 eV consists
mainly from Zn 4s and O 2p and O 2s states.

Fig. 3 HOMO and LUMO levels calculated using GGA functional for nanoclusters (ZnO)34

Fig. 4 HOMO and LUMO levels calculated using GGA functional for nanoclusters (ZnO)60
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Conclusions
Density functional theory studies of the structural and
electronic properties of (ZnO)n (n = 34, 60) nanoclusters
were performed. Optimization of structure geometry, as
well as the band structure research, was performed. It

was established that for the (ZnO)34 nanoclusters, the
most stable are the fullerene-like hollow structures that
satisfy the rule of six isolated quadrangles. For the
(ZnO)60 nanoclusters, different types of isomers, including
hollow structures and sodalite-like structures composed
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from (ZnO)12 nanoclusters, were investigated. It was de-
termined that the most energetically favorable structure
was the sodalite-type structure composed of seven (ZnO)12
clusters with common quadrangle edges.
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